GV103: Introduction to International Relations

Dr. Philip Arena

Game Theory

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Terms and Concept

Simple Models

General Models

Introduction

- Three goals for this lecture
 - Introduce some terms and concepts
 - Show you how to identify equilibria in simple models
 - Analyze an example of a more sophisticated model

Terms and Concepts

Simple Models

General Models

Utility

Terminology I

A subjective measure of how much value an actor attaches to an outcome or expects to receive from pursuing a strategy. Sometimes referred to as payoff. Formally, *i*'s utility for outcome *z* is denoted $u_i(z)$, or $u_i(s)$ for strategy *s*.

Strategy

A detailed plan that specifies what actions will be taken at all junctures, regardless of whether they are actually reached.

Terminology II

Terms and Concepts

Simple Models

General Models

Normal-Form Game

A game-theoretic model in which two or more players must choose their strategies simultaneously. Typically represented by a matrix.

Extensive-Form Game

A game-theoretic model in which two or more players make decisions sequentially. Typically represented by a decision tree.

Terms and Concepts

Simple Models

General Models

Equilibrium

Terminology III

A set of strategies (and, where relevant, beliefs) that leaves no player with an incentive to unilaterally deviate, and thus identifies outcomes which are stable.

Backwards Induction

A technique for identifying equilibria in extensive form games, whereby decisions are analyzed in reverse order and players are assumed to be forward-looking.

Terms and Concepts

Simple Models

General Models

Terminology IV

Incomplete Information

A property of game-theoretic models in which one or more players is uncertain about one or more payoffs for another player.

Imperfect Information

A property of game-theoretic models in which one or more players is uncertain about what actions have taken place previously.

Terms and Concepts

Simple Models ●○ General Models

Stag Hunt

	Stag	Hare
Stag	2, 2	0, 1
Hare	1,0	1, 1

Simple Models 0.

Teen Angst

7/11

Terms and Concepts

Simple Models

General Models ●000

8/11

Decision Under Uncertainty

• Suppose an actor faces a choice between actions A and B

- A always yields the same outcome, worth x
- B yields zx with probability $\frac{1}{z}$, 0 otherwise
- A risk-acceptant actor strictly prefers B
- A risk-averse actor strictly prefers A
- A risk-neutral actor values both equally
- We'll assume risk-neutrality
- Now must calculate expected utilities, denoted E(u(s))
 - For risk-neutral actors, $E(u(s)) = \sum_{i=1}^{N} p_i o_i$
 - If only two possible outcomes, $E(u(s)) = po_1 + (1-p)o_2$

Terms and Concepts

Simple Models

General Models ○●○○

Numerical Examples

- Suppose again there is a choice between A and B
- Where A always yields 0.60
- *B* yields $b_1 \text{ w}/\text{ probability } p$, $b_2 \text{ w}/\text{ probability } 1-p$
- How do b_i and p influence the choice of A versus B?

b_1, b_2	р	E(u(B))	Choose A?
0.70, 0.10	0.1	0.16	Yes
0.70, 0.10	0.5	0.40	Yes
0.70, 0.10	0.9	0.64	No
0.70, 0.55	0.1	0.57	Yes
0.70, 0.55	0.5	0.63	No
0.70, 0.55	0.9	0.69	No

Terms and Concepts

Simple Models

General Models 00●0

Teen Angst Revisited

- Let e > 0 be the sensitivity of Smitten's ego
- Let $i \in [-\infty,\infty]$ be the level of Crush's interest
- Smitten only knows $pr(i = \overline{i}) = \phi$ and $pr(i = \underline{i}) = 1 \phi$
- Where $\underline{i} < -1$ and $\overline{i} > 0$

Analysis

Terms and Concepts

Simple Models

General Models 000●

<ロ> <四> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆</p>

• Smitten evaluates $u_S(\text{Secretly admire}) \ge E(u_S(\text{Go for it}))$

- Equivalent to $0 \ge \phi(1) + (1 \phi)(-e)$
- $\Rightarrow 0 \ge \phi e + \phi e$
- $\Rightarrow e \ge \phi(1+e)$
- $\Rightarrow \frac{e}{1+e} \ge \phi$
- $\Rightarrow \phi \leq \frac{e}{1+e}$
- Or $\phi \leq \hat{\phi}$ where $\hat{\phi} \equiv rac{e}{1+e}$