Statistical Analysis

Welcome back to Introduction to International Relations.  In this lecture, I'm going to offer a  primer on statistical analysis, with a particular focus on the identification and interpretation of patterns of association. 

On the first slide, you'll see the three goals for this lecture. Before I can show you how to identify patterns of association, I need to introduce some terms and concepts (such as “pattern of association”). Once I have shown you how statistical analysis is used to identify such patterns, I'm going to have to take some time to explain why we need to be really careful not to read too much into them. 
It might sound, at that point, like I don't see much value in something I spent a lot of time talking about, but before you decide that you don't have to listen to the rest of this lecture, let me clarify that a bit. My contention is that facts don't speak for themselves. People say they do, but we always need to interpret them. That can be straightforward at times, but it often isn't. I'm going to do my best to help you differentiate between patterns that don't tell us much of anything and those that offer (partial, inconclusive) support for our arguments. The third section of this lecture isn't meant to convince you that you should dismiss all statistical evidence; it's meant to caution you against drawing inferences that aren't warranted, as I know many of you are tempted to do. (Which you'll prove by providing incorrect answers to several questions on the test at the end of term, despite all the time I spent here trying to warn you against that. Which isn't frustrating or depressing at all, but whatever.)
Okay, enough throat-clearing. Turn to the second slide.
A dependent variable is one whose variation we seek to explain. It is often written as y. The independent variables are those whose variation we think might explain (some of the) variation in the dependent variable.  So the dependent variable is the effect, and the independent variables are what we believe to be the causes. We don't know for sure that they are, though, and we're looking to see if there's evidence of a relationship between them and the dependent variable. (Which tells us less than we'd like, since evidence of a relationship can exist even if that relationship isn't causal, and might be missing even if there is a causal relationship. More on that later.) Independent variables are typically denoted x; if we have more than one, we'll often write them as x-1, x-2, etc. 
What tends to confuse students, understandably, is that the distinction between independent and dependent variables is context-dependent. Students often ask questions like, “What about religion? Is that a dependent variable or independent?” That's not how this works, though. Any variable can serve either role (whereas constants can't serve either). It depends on what question you're asking. If you want to know whether a person's spiritual beliefs are associated with their attitudes towards violence, then you're treating religion as an independent variable. (I didn't choose that example at random, of course; we'll talk about that exact relationship later in the module.) If you want to know whether experiences with violence alter people's spiritual beliefs, then you're treating religion as a dependent variable. 
Again, the question of whether a specific variable is independent or dependent can only be answered in the context of a specific bit of analysis. These are not fundamental properties of the variables themselves. 
Okay, turn to the next slide, where I introduce a few more terms. First, it's time I tell you what a pattern of association is, since you've now heard me use that phrase several times. It's something that's said to exist when we've demonstrated systematic covariation between two variables. Which I suppose doesn't really help you any, because now you're wondering what the heck that means. 
Fair enough.
Two variables are said to covary if their values tend to change at the same time. When one goes up, the other also tends to go up (or down; the important point is that we don't expect it to remain unchanged). If that only sometimes happens, but it's not very reliable, then we're not talking about systematic covariation. But if seeing a change in one variable allows us to be pretty confident that the other changed as well, then we've got systematic covariation. 
So, for example, height and biological sex systematically covary. There are some very short men out there, and some very tall women, but, on average, men are taller. (If that generalization bothers you, I respect your instinct to avoid giving offense – I've found that no one is more opposed to political correctness than those who are fond of saying things that aren't any sort of correct; it seems to me that complaints about  PC culture usually come from those who wish they could be absolute jerks without suffering any consequences – but I'd ask you to note that I didn't say that men are smarter or anything that carries a value judgment with it. Some people do make such claims, but the evidence is not on their side. All I said is that men are taller, on average. And that's true. If you haven't noticed that at any point in your life, something might be wrong with your power of perception.)
Again, “systematic covariation” can run in either direction. If observing an in increase in x leads us to expect a decrease in y, there's a negative pattern of association between the two variables – that's still an association. The only time we'd say there's no pattern is when increases in x do not reliably lead to any particular change in y. The number of hours I've been awake systematically covaries with the probability that I've got a cup of coffee in my hand. It starts out high then decreases fairly steadily (where the probability that I've got an alcoholic beverage in front of me increases the longer I've been awake. Don't judge me.) The number of hours I've been awake, however, has no relationship at all to the probability that I'm watching a European football match, because I never do. Nor does the number of hours I've been awake tell you anything about the probability that I'm breathing, because, like most reasonable people, I pretty much always am. I've heard it's kinda important, after all. If you didn't notice, then, I just gave you examples of a negative pattern of association, a positive pattern of association, and two of no pattern at all.
“Correlation” is a term you'll probably hear a lot more than “pattern of association”, but it's actually just a narrower version of the exact same idea. Typically, when people say that two variables are correlated (or that there's a correlation between them), they mean that there's a linear, or at least monotonic, pattern of association between them. What do “linear” and “monotonic” mean? Well, as the name suggests, “linear” means “resembling a line”. A linear pattern is one where increases in x are associated with either increases or decreases in y that have the same magnitude no matter whether we started at a very small value of x, a very large one, or somewhere in the middle. We could, in other words, draw a line representing the relationship, with the values of x on the x-axis and the values of y on the y-axis. (Perhaps now you see why independent and dependent variables are typically represented with those letters.) You'll see an example of that in just a little while. A monotonic pattern is one where increases in x either increase y or decrease it, no matter how big or small x was to start with, but the magnitude of the effect is not necessarily constant. For example, there appears to be a monotonic but not linear relationship between money and happiness. You've probably heard the phrase “money can't buy happiness”, which is cute and all, but try telling that to someone who isn't sure where their next meal is going to come from. When you don't have any of it, money absolutely has the power to make a lot of your misery go away. Once your basic needs are met, however, sure, it stops mattering as much. If you're homeless and hungry, and someone gives you twenty pounds, your life just got a little better. If you're middle class and someone gives you twenty pounds, that's nice but not really a big deal. If you're fabulously wealthy and someone gives you twenty pounds, you now have something to wipe with the next time you go to the loo. Not that you didn't already. 

Crude jokes aside, the point is that linear relationships are stronger than monotonic ones. The latter grow stronger or weaker depending on where you are on the curve (I'd say line, but the whole point is that a line wouldn't really fit here).

Are there patterns of association that are neither linear nor monotonic? Yeah, there are. The tools we use to determine whether two variables are correlated, however, assume that all relationships are linear (or at least monotonic) by default, so if the truth is that there's a non-monotonic relationship between them, we won't know necessarily know that. There are ways of checking, but you have to remember to do that, and a lot of people don't. That's why I draw a distinction between “correlation” and “pattern of association”. They refer to similar ideas, but one is a sort of restrictive way of looking for evidence of the other.

What would be an example of a non-monotonic relationship? Well, just about anything you can have too much of or can overdo.  How long you cook a meal and how enjoyable it is to eat. If you don't cook it long enough, it will be cold and gross, though probably edible. Technically. If you cook it too long, however, it won't be. Depending on what it is, it'll probably just be a pile of ash. You won't see a ton of non-monotonic relationships in this module, but the idea will come up again.

Note that when people say “correlation does not imply causation” (a phrase I myself use a lot, as you'll no doubt notice), what they're really saying is that the existence of a pattern of association between two variables does not imply that the relationship between those variables is causal. That's just a bit of a mouthful. In other words, the problem here isn't just that it can be problematic to assume that all relationships are linear or monotonic, though that's not great. The problem is much deeper.
What exactly is causation? Well, as I've said on the slide, that's a particular form of association, where x directly (though perhaps probabilistically) impacts y, but not vice versa. In other words, if changes in x lead to changes in y, at least some of the time, but changes in y do not impact x, then x is a cause of y. 
That's what we really care about. If we didn't think there was a causal relationship between x and y, we probably wouldn't be checking to see if there was a pattern of association. People sometimes try to say that they're not making causal claims, because they're aware that statistical analysis rarely grants us the ability to do so, but you can tell that they really are if you read between the lines. This is not a minor point. We'd all like to know how to make the world more peaceful and more prosperous. If you establish a correlation between some policy and economic growth, or terrorist attacks, you're very naturally going to be tempted to say that you now know for an absolute fact how to make your country wealthier or safer. You might even berate those who don't support your preferred policies and accuse them of being anti-science. You can only do that, however, if you mistake correlation for causation. If you take nothing away from this module but that one point, I'll be happy, because it's hugely important and most people get it wrong – including those who should really know better.
Let me just clarify what I mean by probabilistic causality before continuing. Decapitation causes death. Pretty obvious, right? Well, so does smoking, but not in the same way.  The link between smoking and lung cancer – one of, but not the only, ways in which cigarettes can kill you – is probabilistic. That is, smoking takes your risk of getting lung cancer from a very, very, very small number to a very small number. (For that reason, the guy who taught the first stats class I ever took used to tell people who asked how he could smoke if he understood statistics that he continued to smoke because he understood statistics. That was obviously a little tongue-in-cheek – he smoked because he was addicted – but you get the point.) Yes, you'd be well-advised to avoid accepting that increase; I'm not encouraging anyone to take up smoking! I'm just saying that there's a pretty clear difference between the way cigarettes “kill” you (slowly, if at all) and how getting your head chopped off tends to bring things to a pretty immediate stop. That's the difference between probabilistic and deterministic causality. If something is guaranteed to happen as a result of x, then there's a deterministic relationship between it and x. If something is more likely to happen as a result of x, that's still a causal relationship, but it's probabilistic. 
I think most people get this, on some intuitive level, because I've never heard anyone say that they don't believe smoking causes cancer just because most smokers die of something else (such as a heart attack). But I have had students do poorly on tests or essays because they thought that we can't say that x causes y if other stuff  matters and x doesn't always lead to the same result. Don't make that mistake. If I ask you a test question about whether some factor causes war or not, all I'm asking you is whether the presence or absence of that factor directly impacts the likelihood of war (if only by a modest amount), not whether other things also impact the likelihood of war. I'm asking whether there is a casual relationship between the two variables; nothing more nor less.
Okay, so how do we identify patterns of association? Well, that can get pretty complicated. There are some pretty advanced methods out there that I might try to explain if you were PhD students. But for this module, there's no need for that. The fourth slide gives you an idea of the basic logic. If x and y are both binary (that is, there are only two categories), then we basically just compare how often y occurs when x is present to how often y occurs when x is absent. The more often y occurs in the presence of x, the more likely it is that there's a positive pattern of association. The more often y occurs in the absence of x, the more likely it is that there's a negative pattern. Though, really, it's the difference between the two that matters. If y happens a lot overall, but happens even more often when x is present than when it is absent, then there's a positive pattern of association. If y rarely happens, but happens somewhat more often in the presence of x than in its absence, that too means we've got a positive pattern of association. 
For example, between 1816 and 2001, at least one bilateral war had occurred in roughly 1% of directly contiguous dyads, compared to roughly one one-hundreth of a percent of dyads that are not contiguous. Of course, for that to make any sense, I need to explain a few of those terms, so let me now do that. A bilateral war is a war that only involves two parties. If there's three or more, we call it multilateral war. Dyads are units that consist of two somethings. In this context, that would be two states. Contiguity is a property possessed by things that are directly connected. So a contiguous dyad is a pair of states that share a border. The US and Canada comprise a contiguous dyad; the US and Argentina do not. So this example tells us that countries that border one another have fought wars (often over the location of that border) far more often than countries that don't border one another, even though neither type of dyad has experienced war all that often. As I've already said, war is much rarer than people appreciate. But it's not as rare amongst neighboring states. 
If x and y are continuous (meaning there's a range of values they can take on), then the logic is similar but we talk about how much rather than how often. A positive pattern of association exists if higher values of x tend to be observed alongside higher values of y, and negative if they're observed alongside lower values of y. 
To illustrate that, I looked at the total volume of trade for every pair of states in 2001, and found that, on average, every additional 100 miles separating their capital cities was associated with a decrease of roughly 10 million US dollars in total trade. Lots of things affect trade, of course, some of which we'll discuss in subsequent lectures, but it shouldn't surprise you to learn that distance is one of them. 
Note, however, that I've just told you that geographic distance impacts both conflict and cooperation in the exact same way. In other words, states that have come into conflict with one another at some point in the last two hundred years tend to trade at much higher rates than those who have never fought a war. That's not because a recent history of conflict causes more harmonious relations. It doesn't. One absolutely should not conclude that if we wish to increase cooperation between states, we should encourage them to go to war first. Remember, correlation doesn't imply causation. We're going to talk more about that soon, but hopefully you're already starting to see the problem. And you should remember this particular example, because it may or may not appear on the test at the end of term. Hint, hint.
Okay, turn to the next slide, where I tell you how to interpret regression results. What is regression? It's a fancy way of looking for correlations while taking other factors into account. Magic, for all intents and purposes. Not really, of course, but you don't need to know how it works. (Drop me an email if you'd like to, though.) What you do need to know is how to interpret the results that someone like me might produce by performing regression analysis. That table there shows you what the results of any such analysis will look like when I show them to you in future lectures (and I'll do a fair amount of that). This particular table isn't based on any analysis, however; it's just there so I can talk you through what to look for. I'll show you some real examples soon, but let's start with a blank slate.
Here, the columns differentiate statistical models. Separate analyses, in other words, though typically with the same dependent variable. The only reason they're in the same table is to save space. It's really essential that you remember that the information in the middle column was obtained independently from the information in the rightmost column, because sometimes they tell very different stories.
Each row concerns a different independent variable. The individual cells summarize the pattern of association found between each independent variable and the dependent variable of each statistical model. I'll convey that information to you as simply as possible, using plus or minus signs to tell you the type of pattern, and an asterisk to indicate that the association is statistically significant. (That's a fancy term for patterns of association that are strong enough that we're confident something is going on. We still can't be sure what, for reasons I've already alluded to and will discuss further in just a bit, but we can be fairly confident that we're not looking at white noise. Random chance alone can make it look like there are patterns of association between variables that have absolutely nothing to do with one another, but if you see an asterisk, then I've pretty much ruled that possibility out.)
So if the table you're looking at here was based on actual analysis, it would tell you that x-1 was found to have a positive association with y in the first model, but a negative association in the second model. That can happen, incidentally. If x-1 referred to whether the dyad experienced a war in the past two hundred years, for example, and y was the amount of trade between them in the current year, and x-3 was whether the dyad is contiguous, this exactly what we'd expect to see. That would tell us that, overall, there's higher levels of trade between states that share a border, but once we account for the shared border, we then we find lowers levels of trade following a recent war. Again, it's important to remember that the different columns report the results of separate models, and they needn't agree with one another.
If you see a blank cell, that means the independent variable named on the left wasn't even included in that column's model. If I asked you what pattern of association between x-3 and y was found in the first model, for example, and you answered “none”, you would be incorrect. That just might be a mistake many of your classmates will make on the second in-class activity. Don't be like them. Blank cells don't tell us that there's no pattern – a result we could only have arrived at if we'd actually checked – they tell us absolutely nothing at all because the variable wasn't even included in the analysis (that time).
If a variable was included, there will always be a best guess at what sort of pattern exists, and thus there will always be either a plus or a minus sign. This takes us back to those asterisks. If you don't see one, then the pattern we identified is so weak that we don't deem it to be statistically significant. Don't ignore the asterisks. They're extremely important. If you see a plus or minus sign without a pretty little star shining down on it, that means it kinda sorta looks like there's a super weak pattern, which means we can basically say that no pattern was found. 
One more time so those of you who actually listened to this lecture don't get confused during the next activity – if the cell was left blank, we can't say anything at all. If there's a plus or  minus sign without an asterisk, we looked for a pattern and didn't really find one. If you see a plus or minus sign with an asterisk, that means we looked for a pattern and found one that was statistically significant. (Positive if there's a plus sign and negative if there's a minus sign.)
Got that? If not, you might want to rewind a bit and listen again. It's really important that you know how to read these tables, because you're going to see more of them.
Turn to the next slide. There, you see the results from actual analyses I performed. These aren't very interesting results, and they don't speak to either of the big puzzles I hope to tackle in this module, but they give you a more concrete sense of what regression results look like than the previous slide did.
I looked at how much each country spent on the military in every year between 1946 and 2007. More specifically, the dependent variable in both models is military expenditures per capita (that's total amount of money spent on the military divided by the total population of the country, so that we're making fair comparisons between Israel, a very militarized country with a relatively modest population, and Nigeria, which spends a fair amount of money on the military in absolute terms but wasn't terribly militarized for most the period covered by this data.) 

The independent variables I chose to include, mostly for illustrative purposes, are energy consumption per capita (a crude but useful measure of economic development) and simple indicators for different blocks of time. 

What we find is that, regardless of whether we take temporal effects into account, countries that consume more energy per person also spend more money on the military, relatively speaking. That's not very surprising, or informative, but my goal at the moment isn't to impart great wisdom about relative rates of military expenditure, but just to get you used to interpreting tables of results. 

On the next slide, you'll find an example of regression results presented graphically. Each of the red dots is a British electoral district. The dependent variable, on the y-axis, is the percent of people in that district who voted leave in the 2016 EU Referendum. The independent variable, on the x-axis, is the percent of people in that district who voted UKIP in the 2014 elections to the European Parliament. The blue line is our best guess at the pattern of association between these two variables. As you can, it's positive (the line slopes upward). That is, more people voted to leave the EU in places where they'd previously voted for a political party that has long been opposed to the EU. No surprise there, but hopefully that gives you a better sense of how this all works. 
Let's move on to the final topic for this lecture. I've hinted at this a few times now, but it deserves more attention. What you see on the eighth slide is a graph depicting the number of individuals in the US diagnosed with autism as well as the amount of organic food sold in the US over the same time period (1997 to 2009). The graph shows a striking correlation, but I don't want anyone to think that I'm suggesting autism is caused by eating organic food, because I'm not. Rather, I'm trying to drive home, yet again, the incredibly important point that correlation doesn't, by itself, tell us much of anything. That's a point that I think a lot of people have a superficial appreciation of at least after they've heard a few trite examples. (I've got more of those, don't worry. They're fun.) For all that people joke about how cliché the phrase “correlation doesn't imply causation” is, it's still depressingly common for people to try to win an argument by pointing to graphs like this, or citing studies that found evidence of a pattern of association. American proponents of gun control, for example, will point out that countries with strict gun control laws have, on average, lower rates of gun violence. Or they'll point to the same pattern among the American states. But the problem is that these countries differ from one another in many other respects, as do the American states. It's entirely possible that gun control lowers gun violence! I'm not saying that it doesn't. But one thing I know for sure is that you can't prove it does by telling people that gun violence is less common in the UK than the US, or that it's also lower in Connecticut than Alabama. Because it's at least possible that something else accounts for both the differences in violence and in gun laws (like British people being more civilised than stupid Yanks, and northerners being less quick to anger than southerners, with their honor culture and whatnot.) You at least need to try and rule that possibility out first before you can declare that you've proven your point. Unfortunately, a lot of people don't do that. 
I probably just offended some of you with that example, though, and I don't even care too much about the topic. (By which I mean that I don't know enough to get into a debate. I'm not trivializing gun violence. It's a serious problem in the US.)
Let's go back to some light-hearted examples. In the US, researchers have found a negative pattern of association between weekly sales of hot chocolate and the rate of petty crime. Does that mean that we should tell people that hot chocolate is a powerful deterrent and will protect them from criminals? No, of course not. That pattern exists because people buy more hot chocolate when it's cold outside, and it just so happens that people are less inclined to stand on street corners and snatch purses when the temperature drops. Both variables, in this case, are being caused by the weather. If you don't account for that statistically, however, you absolutely will find a pattern of association between the two of them, because they systematically covary. They don't do so because one directly impacts the other, but that's the whole point I'm trying to make – things can move together without being causally related to one another, so if we want to prove that they are causally related, we can't just declare victory after finding evidence that they move together.
A great way of thinking about this is the purple pajamas theory of success. This is hypothetical, but sadly all too believable. Imagine that in the late 1980s, some quack child psychologist did a bunch of talk shows touting the idea that you should put your kids to sleep in purple pajamas, because purple is the color most associated with royalty, and it makes kids aspire to greatness. Suppose this became a real fad, and a bunch of middle and upper-class parents went straight out and bought their kids new pajamas, while working-class families either didn't catch the  interviews on the daytime talk shows or decided that they couldn't afford to buy their kids new pajamas just because some talking head said it might have an effect. What would happen? Well, if you looked twenty-five years later at rates of graduation from uni, levels of debt, whether people had gotten divorced, or whatever, you'd find that those who were put to bed in purple pajamas are doing better in life than those who weren't, on average. But you'd be measuring the effects of class, not pajamas. 
That's easy enough to fix, though, right? Well, maybe in some cases. One study found that people who brush their teeth have fewer heart attacks, and while the authors admitted that they had no idea why that might be, they still interpreted the pattern as causal. That's, um, nucking futs. If exercise is important to health, and no one doubts that it is, and if people who don't exercise enough are ashamed about that and thus lie to researchers when asked how often they do it, then researchers who compare the health outcomes of people who do a lot of everything they've been told might be good for them (including getting regular exercise) to those who don't are going to find that self-reported levels of exercise don't account fully for the difference in health outcomes, and so will conclude that something else must explain it, like how often people brush their teeth. But they haven't given enough credit to exercise, because they can't have. Not if people lie. (And you don't really doubt that they people lie about that sort of thing, do you?) 
One more example before I talk about how we deal with this problem. (Though you're not going to like my answer, because it's not very optimistic.) You might be thinking that even if correlation doesn't necessarily imply causation, the lack thereof has got to be pretty damning; that maybe it's necessary for causation, even if it's not sufficient. 
If so, you'd be wrong.
You'd be in good company. I know a lot of smart people – people with PhDs – who make the same mistake. I'm not trying to embarrass you. I am, however, trying to educate you. There's no shame in thinking that the absence of a correlation implies the absence of causation, but it's still wrong.
Turn to the ninth slide, if you haven't already.  There, you'll find a thought experiment that shows how a pattern of association might not be evident even if there is, in fact, a causal relationship. The example I'm going to use here involves the effectiveness of peacekeeping, which we'll discuss again later in the module. Suppose, hypothetically, that 120 civil wars occurred over some amount of time. And suppose further that half of them gave way to what we might think of as a fragile peace. That is, the fighting stopped, but everyone feels like it could start up again at any time. Maybe one of the sides only agreed to a ceasefire so they'd have time to rearm, or whatever. If nothing is done to stabilise things, we expect two-thirds of these cases to return to war in fairly short order. The other half, though, had a more definitive resolution. That's not necessarily a rosy scenario, because when I say “a definitive resolution”, that might mean one side was slaughtered, and so couldn't go back to fighting even if they wanted to because they no longer exist, but sadly, that's often what it takes for us to be confident that violence won't break out again soon. Let's say that, left to themselves, we expect one third of this second set of cases to go back to war. The risk is still there, but it's substantially lower.
Now, for the sake of argument, assume that peacekeeping is always partially effective. By that, I mean that we're going to assume that the probability of another war occurring will always be lower if a peacekeeping operation is sent than without one, but it never drops all the way to zero. Let's also assume that peacekeeping operations have a bigger effect when the situation is already pretty stable than when it's more volatile. As I've said on the slide, albeit in more technical notation than some of you might be comfortable with, I've assumed that the probability of another war gets cut in half (from two-thirds to one-third) when peacekeepers are sent to the first set of countries and drops to one-fourth for the second set of countries (going from one-third to one-twelfth). Finally, suppose that the UN doesn't have enough resources to help everyone, and goes where it's most needed. Let's take that to the extreme, just for the sake of argument, and assume that all 60 of the fragile-peace countries get peacekeeping operations while none of the other countries do. (When it says on the slide PKO=1, that means a variable measuring whether a peacekeeping operation was sent to a country would take on a numerical value of 1, indicating that such an  operation was indeed deployed. Similarly, PKO=0 would mean that no operation was sent. I wrote it that way to save space on the slide.)
What would happen, given these assumptions? Well, since the baseline probability of war breaking out again for the second set of cases was one-third, and it's the baseline probability that matters for them, we'd expect one-third of them to go back to war. One-third of sixty is twenty, so that's twenty new wars among the sixty countries that didn't receive a peacekeeping operation. What about the other half? Their baseline probability was two-thirds, but we don't care about the baseline for them, because all of these countries got peacekeepers. We therefore expect one-third of them to return to war. That's twenty new wars here too. 
In other words, if we just looked at the raw data, we'd see twenty news wars among the sixty countries that experienced peacekeeping operations, and twenty new wars among the sixty countries that didn't, which would mean that there's absolutely no correlation between peacekeeping and returning to war. And if we were naïve enough to think that the absence of correlation implies the absence of causation, then we'd conclude that peacekeeping doesn't work in this hypothetical world where we assumed from the very outset that peacekeeping is always effective!
Does that prove peacekeeping works? Of course not. But it tells you something about how you'd go about proving that it doesn't, if for some reason that was your goal. It tells you that you can't conclude something doesn't work just because there's no correlation between it and the outcome it's supposed to produce. Even when there is a causal relationship, we won't always find evidence of it when we look at the data.
The point I've been trying to make is that we must always be concerned about the possibility that some third factor, z, causes variation in both x and y, thus creating a correlation between the two even though they have no effect on one another. Geographic proximity might both be the reason that some dyads are more likely than others to have fought a war in the past and also be the reason they trade at higher rates currently. Cold weather might both be the reason that people buy hot chocolate and why fewer purses are being snatched. Health-consciousness might both be why people brush their teeth and why they are healthier. A fragile peace might both make return to war more likely and encourage the UN to send peacekeepers. And so on. This is a serious, serious issue, not just for students of international relations but all of us, as human beings. People are constantly trying to persuade you on the basis of correllational evidence, and you'll be better at life if you don't automatically fall for it. 
So, how do you know when to believe them? When are causal interpretations, if not quite warranted, at least somewhat less ill-advised? Have I got anything to offer?
Sort of. But “sort of” is the best I can do. That's the best anyone can do, and if they tell you otherwise, you should check your pockets. I know that's a depressing answer – really, I do; I've gotten in trouble with my fellow academics for speaking my mind on this topic – but it's the right one.
One thing that helps a lot is the level of control afforded by the laboratory setting. We don't need to be concerned that our correlation is truly being driven by some third factor, z, when we get to determine who is exposed to x and who is not, because we can then make sure that nothing else differs systematically between the two halves of the study. Some have gone as far as to say that controlled experiments are the gold standard of causal inference. And while I understand the reason that ruffles some people's feathers, I think that's basically right. We rarely have that option in international relations, however. If you want to know whether headache medicine works, sure, run a controlled experiment; randomly give some people the real thing and others a sugar pill. Boom. Solid evidence, immune to the “correlation doesn't imply causation” critique. But try getting world leaders to let you decide how much they're going to spend on the military, or whether they offer concessions in the midst of a crisis. And then tell them that your decisions will be entirely random, because you want to be sure no third factors got in the way of the results. 
Some of my colleagues think these critiques apply to statistical analysis of large data sets but not to in-depth analysis of individual cases. I'm not so sure. I'll happily grant that when you go into the archives to read formerly classified documents, or interview decision-makers, you gain insights that aren't available in large data sets. That might even guard against erroneous inferences in some ways. But it hardly guarantees that you'll arrive at the objective truth about those cases. And it certainly doesn't solve the problem for those of us interested in generalizable explanations.
If you're interested in big questions like why there isn't more cooperation in the world, or less conflict, you're eventually going to have to look at big data sets. Maybe not instead of other types of evidence, but that's got to be part of the process, I think. When you do that, however, you have to be very careful about how you interpret the patterns you do or don't find. As near as I can figure, the best we can do is acknowledge that we all come to the table with certain opinions, based largely on intuition, and do our best to revise those opinions based on logic and evidence. That means looking for contradictions in our views by formalizing the arguments and sorting out the logical implications of our initial assumptions. That's something game theory is really good at, and we'll talk more about that soon. It also means looking at the evidence, yes, but being aware that there's often more than one way to interpret the same pattern. As I said at the start of this lecture, facts don't speak for themselves. We need to interpret them. 
As I've said before, I think we need both theoretical and empirical models. Empirical models tell us what patterns exist; theoretical models tell us why a certain pattern might exist. If you don't have a clear theoretical argument telling you how x might exert a causal impact on y, then you probably shouldn't read too much into the fact that there's a correlation between the two. And if a well-developed theoretical argument tells us how some third factor, z, would produce a correlation between x and y even if x had no direct impact on y, then you can't take evidence of correlation between x and y as definitive proof in favor of a causal relationship.
Even if you really, really want to believe that there is one.
