Game Theory

Welcome back to Introduction to International Relations. In this lecture, I'll introduce you to game theory, which, despite its name, is not actually a theory at all but a tool for developing and analyzing theoretical models. 
What's the difference? Well, there are several major theories of international relations, as we'll discuss in the very next lecture, and they make very different assumptions about how the world works. The only assumption that game theory absolutely requires us to make, each and every time we develop a model, is pretty innocuous (more about that soon). To flesh out any given game-theoretic model of international relations, however, we need to make specific assumptions about whose choices shape world events, what they want, and what constraints they face. Those are going to come from one of the major theories of international relations. (Even if we don't make a point of grounding our model in one of those theories, we're probably going to end up doing so anyway, because they pretty much cover all the options.) There are game-theoretic models built on the assumptions of each of the theories we're going to discuss next time. You'll see quite a few of them as we progress through the module. First, though, you need to learn the basics of analysing game-theoretic models.
As I say on the first slide, there are three things I'm going to do in this lecture. First, I'll introduce some more terms and concepts. Second, I'll show you how to identify equilibria in the simplest sorts of game-theoretic models. Finally, I'll take you through an example of a more sophisticated model. The simplest models are very, very easy to analyse – easy enough, in fact, that I'll expect you to do so yourselves at times. But they're also quite limited. For that reason, you at least need to know how to interpret the results of more advanced models, and have some sense of how I've gone about analysing them, because I'll rely on them quite a bit in future lectures.
Okay, turn to the second slide. The first term I need to define for you is utility. The one assumption that every single game-theoretic model makes is that people maximize (expected) utility. As it says on the slide, utility is a subjective measure of how much value an actor attaches to an outcome, or expects to receive from pursuing a particular strategy. (In this context, “actor” does not refer to a thespian or Hollywood celebrity, but one who takes actions or makes decisions; I use generic language because the actors in our models will sometimes be states but will other times be international institutions, dissident groups, and so forth). Sometimes I'll refer to an actor's utility as their payoff. Same thing, just different wording. 

When you see utilities written out formally, you'll see a u for utility, a subscript identifying the actor who receives that utility, then something inside a set of parentheses that will either refer to an outcome or a strategy that the actor can pursue. 

A “strategy” is formally defined as a detailed plan that specifies what actions will be taken at all junctures, regardless of whether they are actually reached in equilibrium. That's an important distinction. If I show you a game-theoretic model where some actor may potentially be called upon to make two or three different decisions, depending on how the other player reacts, and you determine that in practice they'll only ever have to make one decision because the game will end before the  others would come up, the proper way to state their equilibrium strategy will tell us what they would have done at those later stages, had the game continued. 
As you can see on the next slide, there are two basic types of games: normal-form and extensive-form. In normal-form games, the actors must make their decisions simultaneously. These are usually represented with matrices (tables). In extensive-form games, the actors make decisions sequentially (one after the other). These are often represented by decision trees. You'll see examples of both later this lecture.
Regardless of which type of game the actors are playing, what we as analysts are interested in is identifying the equilibrium (or equilibria, if there's more than one). An equilibrium, as you can see on the fourth slide, is a set of strategies (and, where relevant, beliefs) that leaves no player with an incentive to unilaterally deviate, and thus identifies outcomes which are stable. Beliefs are estimates of how likely different things are to happen. They're relevant when one or more actors faces uncertainty. I'll close out this lecture with an example of that. An incentive to unilaterally deviate exists when an actor can receive more utility (a higher payoff) by changing their strategy, holding constant the strategy of the other player. That is, if it's possible for one or more actors get more of what they want, but only if two or more actors agree to change their strategies simultaneously, that does not constitute an incentive to unilaterally deviate. That's an important distinction, because no one can control anyone's behavior but their own. They can try to influence that of others, through a mix of carrots and sticks, or simple persuasion, but when we seek to identify equilibria, we look for combinations of strategies (and beliefs, if relevant)  that wouldn't allow anyone to make themselves better off by changing their individual behavior, because if they can, then they obviously would and that wouldn't be an equilibrium. But if they can't, then whether they're happy with payoff they're going to get stuck with or not, that's the equilibrium to the model. And if the model has done a decent job capturing the most important features of reality, then we'd expect that outcome to occur more often than not in the real world as well.
Incidentally, when more than one outcome is possible in equilibrium, which is often the case, then we don't interpret our models as telling us what will happen so much as giving us a better sense of when each outcome is more or less likely to occur. That point will become clearer towards the end of this lecture.
Backwards induction, as it says on the slide, is a technique for identifying equilibria in extensive-form games, whereby decisions are analyzed in reverse order and players are assumed to be forward-looking. 

All of that probably sounds pretty abstract. Hopefully, some examples will help. And those are coming, soon, so just bear with me for a few more minutes. There are two more terms I want to define before we start analysing some simple games. Both of them deal with uncertainty. There are basically two reasons for an actor to be unsure about what will happen if they pursue a certain strategy: one is that they lack information about the other player's preferences, and thus can't easily predict how that person will respond to their actions; the other is that they don't know for sure what actions have already been taken. The first of those is known as incomplete information, the second imperfect information. I know, those names are less than ideal. In ordinary language, “incomplete” and “imperfect” are pretty close to synonymous. But that's the convention people smarter than you and me came up with, so we just have to go with it. I won't test you on that, but you may see those terms used in other modules, so I want you to know what they mean.
Okay, turn to the sixth slide, where you'll find an example of a normal-form game. This one is pretty famous (as such things go). It's known as the Stag Hunt, and it's based on the work of philosopher Jean-Jacques Rousseau. This is a nice, simple game,  where there's just one choice made by each player. They have to decide whether to hunt a stag (that's a fancy word for a male deer) or a hare (which belongs to the same family as rabbits). If the two hunters work together to bring down a stag, we assume that they're going to be successful, and so they'll both eat well that night. But they do need to work together to do it. If either goes after a stag on their own, they're going to go hungry. Hares, apparently, are easier to take down. (I'd have thought it hard to hit a small, fast-moving target, but what do I know?) We therefore assume that anyone who decides to hunt a hare will have something to eat that night, regardless of what the other hunter did. Just not as much as half a stag.
That's three possible outcomes each: go hungry; eat a hare; or share a stag. For the sake of simplicity, we'll assign utilities of 0, 1, and 2, respectively, to those outcomes. Note that larger numbers are better – you always want more utility (because utility is defined as the value you attach to getting what you want). Of course, we could say that going hungry brings a payoff of negative one, but the actual numbers are less important than that the differences between them. As long as we choose values that ensure that it's better to have a hare than go hungry, and better still to share a stag, then we'd still arrive at the same substantive conclusions.
In each cell, you'll find two numbers. The first tells us the utility received by the row player (typically referred to as player 1), while the second tells us the utility for the column player (player 2). So if both players choose Stag, each will receive a 2, because if they both choose that strategy, they'll succeed in bringing down a stag, and they'll both have a lot of meat. If player 1 chooses Stag while player 2 chooses Hare, then 1 ends up in the upper right cell and receives a payoff of 0, because they're going to go hungry, while player 2 gets a 1. Similarly, if player 1 chooses Hare while 2 chooses Stag, 1 ends up in the lower left and gets a payoff of 1 while 2 gets 0. Finally, if both choose Hare, they end up in the lower right, and each receives a utility of 1.
How do we identify equilibria? Recall that, by definition, equilibria are combinations of strategies that leave no player with an incentive to unilaterally deviate. So let's just go through each one, in no particular order, and see if either player would be better off switching to a different strategy. How about (Hare, Stag), meaning player 1 hunts a hare and 2 hunts a stag? Would that constitute an equilibrium? No, it would not. If player 2 hunts a stag, player 1 is better off doing so as well. And if player 1 hunts a hare, player 2 is also better off doing the same. So they'd both have an incentive to deviate from the strategies in question. It doesn't really matter whether both players have an incentive to deviate, by the way. As long as one of them does, that combination of strategies is not an equilibrium, and that's all we need to know.
Since everything is symmetric, (Stag, Hare) can't be an equilibrium either.
What about (Hare, Hare)? That wouldn't be the best possible outcome. It would mean both players have less to eat than they could have. An economist would call that outcome Pareto inferior to (Stag, Stag). (Pareto inferior outcomes bring less utility to at least one player than some alternative does, without bringing greater utility to anyone. Pareto superior outcomes bring more utility to at least one player, without bringing less to anyone.) That's not what I'm asking at the moment, though. We just want to know if (Hare, Hare) is an equilibrium, not whether it's a super happy one. Put differently, what we need to focus on is whether either hunter could get more of what they want by changing their behavior, and only their behavior, if, for whatever reason, they both initially decided to hunt hares. And, sadly, they cannot. If player 1 and player 2 both decide to hunt hares, neither one is going to unilaterally change their mind and go after a stag. Because if they do, they're going to go hungry. The model is therefore telling us that bad outcomes can occur as a result of each player doing what's in their best interest. We can't just tell them they're being stupid and expect things to change – even though that's exactly what journalists (and many others) tend to do when these sorts of situations arise in politics. The problem is that neither player is being stupid. They've both chosen the best possible course of action, considering what the other is doing. That's tragic, but it's really not stupid.
I use this example, of course, because I'm going to try to convince you in future lectures that there are real world examples of this; that part of the reason there isn't more cooperation in the world, sadly, is that sometimes states do what's in their best interest, individually, but that means that everyone's worse off than they could have been. In some cases, it's pretty clear that they're all aware of this. If the only way to reap the benefits of cooperation is to get everyone to change their behavior at the same time, though, knowing that everyone could be better off doesn't really do anyone any good. They still have to get there from here, and that's not always easy to do – especially since international relations is often more analogous to a two-hundred player game than a two player game. So I've actually given you one answer to one of our big puzzles already, though I haven't gone into as much detail about that explanation as I will later on.
Note, by the way, that (Stag, Stag) is also an equilibrium. It's just not the only one, as we might perhaps like to to be. If, for whatever reason, both players agreed to go after the stag, no one would have any incentive to deviate from that agreement. 
Of course, in real life, states sometimes do have incentives to go back on their word. But the point of this model is that even if they didn't, cooperation still wouldn't be assured. Sometimes, states get stuck in a bad equilibrium, and finding a way to a better one isn't always easy. If they could get there, sure, they'd stay at the happy place. That doesn't mean they can, or will, though. I'll talk more in future lectures about some real-world examples of that, because I think that actually is inhibiting international cooperation right at this very moment, though I also think these sorts of problems have occasionally been solved. Again, the point of this lecture is just to teach you basic game theory so that you'll be able to follow along when I'm ready to do come back to the puzzles from the first lecture in earnest. 
I hope, then, that you feel comfortable checking for equilibria in simple normal-form games. You'll be asked to do that on the take-home test, so if you didn't really follow the discussion of the Stag Hunt game, you might want to go back and listen to that part again. Or email me, or talk to me after the next in-class activity.
Okay, let's move on to extensive-form games. On the next slide, you see a sort of frivolous example of one, concerning teenage angst. We'll analyse deadly serious extensive-form games later on, which will model international crises that could escalate to war, but I thought I'd go with this for now.
Note that this version of the model makes very strong assumptions. There's only going to be one equilibrium, which would suggest that interactions of this sort always end the same way. They don't, of course. For that reason, I'll show you a more realistic version once I've explained how to analyse models with uncertainty. But first let's talk through the super-simple, extremely unrealistic version, just to get a better sense of how to use backwards induction to solve extensive-form games.
We've again got two players, though they now make their decisions sequentially. That is, at the start of the game, Smitten decides whether to admire Crush from afar, safe from the possibility of rejection, or to go for it. If (and only if) Smitten decides to go for it, Crush then decides whether shoot Smitten down or give them a chance. So this isn't like the Stag Hunt, where both players had to make a decision no matter what, and had to do so without knowing what they other one was going to do. Crush only has to make a decision if Smitten approaches them.
That much, I'd argue, is pretty realistic. That's not always how these things go down, but what we're going to change later isn't the basic structure of the game but the assumptions I've made about the payoffs. At the moment, they're very rigid. I've only done that because it's easier to explain backwards induction, and the identification of equilbria in extensive form games, when everything is straightforward, though. 
As with normal-form games, extensive-form games display utilities in pairs. At each terminal node, we're given the payoff that the first player to make a decision in the game (in this case, Smitten) would receive, followed by the payoff for the next player (in this case, Crush), and so on if there's more than two. 
What's a terminal node, you ask? Well, a node is where a branch ends. If another player then gets to act, it's a decision node. If the game ends there, it's a terminal node. So when Smitten chooses to secretly admire Crush, they bring us to a terminal node. When they instead decide to go for it, they bring us to a decision node. Then Crush brings us to one of two terminal nodes by either shooting Smitten down or giving them a chance. So in this game, there are three terminal nodes and two decision nodes (the very start of the game counts as one too). 
I've given both players a payoff of zero if Smitten decides to play it safe and admire Crush in secret. No one will be made better off, but neither will anyone get hurt. If Smitten goes for it, and Crush shoots them down, they both lose utility. For now, I'm assigning each of them a negative one at that outcome. Obviously, that's something you could quibble with, and that's one of the assumptions I'm going to relax in the second version of the model. But for now, they both get a negative one, mostly because that keeps things really simple. And, again for the sake of simplicity more than anything else, I've assigned both players a one in the event that Smitten goes for it and Crush gives them a chance. That's more than a little optimistic, of course (at least from Smitten's perspective), and so we'll back away from that very strong assumption soon, but now we've got everything we need to solve this game, and you can finally see how backwards induction works. We can worry about relaxing our assumptions, allowing for more than one possible way for the game to end, later. 
To apply backwards induction, we start at one of the terminal nodes and ask what the player who makes a decision there would do; which of their choices brings them more utility. (If you don't like the implicit assumption that people are selfish, you can rewrite the players' utilities to be interdependent, say by penalizing one player for lowering the other's utility, as I've actually already done to some extent by giving Crush a negative one when they shoot Smitten down. But we still solve models by identifying strategies that maximize players' individual expected utilities.) We then move up the tree to the next decision that gets made and ask what that player would do, knowing what they know about the likely consequences. That is, we assume that players try to anticipate one another's reactions and behave accordingly.
In this super-simplistic version, shooting Smitten down brings Crush a payoff of negative one, while giving Smitten a chance yields a payoff of one. Since one is bigger than negative one, Crush's optimal strategy is to give Smitten a chance. And, for now, Smitten can anticipate that. So Smitten only has to compare the zero they get if they decide to secretly admire Crush to the one they get for sure (in this version of the model) if they go for it. Obviously, then, they go for it, because one is bigger than zero. The unique equilibrium to this game is thus Go for it; Give them a chance. 
That's it. We're done with this version of the model. 
Easy enough, right? If you were to see an extensive-form game on the take-home test, you'd know how to figure out what the equilibrium is (or equilibria are)? I hope so, because there's a 100% chance of that happening. If not, you know what to do.
Okay, let's take a little detour to talk about decision-making in the face of uncertainty before we revisit our model of teenage angst. Suppose an actor faces a choice between A and B, where A is a sure thing but B entails some risk. Specifically, as I say on the eighth slide, assume that A always brings x utility, whereas B either gives a payoff of z times x or zero, and the former happens with probability one over z (and thus the latter with probability one minus one over z). I haven't said it on the slide, but assume that x is positive and z is not just positive, but greater than 1. That means that choosing B brings some chance of an outcome that's strictly better than x, but also some chance of getting nothing at all. If z were 2, for example, there'd be a fifty percent chance of getting something twice as good as x, and a fifty percent chance of getting nothing. If z was 3, there'd be a one-third chance of getting something three times as good as x, and a two-thirds chance of getting nothing. 
If you listened to the lecture on mathematical preliminaries, you'll note that the expected value of B is precisely x. This set-up helps me explain the formal definitions of different attitudes towards risk. A person who is risk-acceptant would strictly prefer B to A. Such a person is willing to take bad bets, in the sense that they choose the risky option even when the expected value is less than that of the sure thing. (How much less? Well, that depends on how risk-acceptant they are.) A risk-averse person would strictly prefer A to B. Such individuals are unwilling to take good bets, in the sense that they choose the sure thing even when the expected value is less than that of the risky option. (How much less? Again, that depends on exactly how risk-averse they are.) A risk-neutral person is strictly indifferent between A and B.
These terms have precise, technical definitions, but they're sometimes used by journalists who probably learned about them at some point but don't remember what they mean. You'll often hear on the news that the stock market is down because investors have become more risk-averse. If the expected value of an investment suddenly declines, however, a risk-neutral person will be less likely to invest in it. You can only infer risk-aversion from a decreased rate of investment if you know that would-be investors are actually turning down good bets. And there's very little reason to believe that people's fundamental attitudes towards risk change from day to day. Yet journalists never even try to convince us that they have some way of knowing that the investments that aren't being made would have been just as good as the ones that actually were made the day before; they just automatically assume that if people aren't investing as much today as yesterday, it must be because their fundamental attitudes towards risk have changed. Which is ridiculous.
Anyway. 
We're going to assume that everyone is risk-neutral in this module. Why? Not because I have any particular reason to believe that's the case. I don't. As might be obvious from that rant about journalists and the stock market, sorting that out isn't always easy. A lot of people simply assume that anyone who takes risks must be risk-acceptant and anyone who doesn't must be risk-averse, but without knowing whether the risks they did or didn't take had the same expected value as some safer option, we really can't draw such conclusions. You might think George W. Bush was risk-acceptant and Obama risk-averse, but unless you've got fairly precise estimates of the expected values of their decisions, as they would have perceived them given their subjective utility functions, you're abusing terminology at best and trafficking in tautologies at worst. The other, perhaps more important, reason I'm always going to assume risk-neutrality is that it keeps our models a lot simpler without really altering any of the substantive conclusions I'm going to emphasize in future lectures.  That is, I could allow for the possibility that some leaders are more tolerant of risk than others, which would feel appropriate and responsible to many of you, but that wouldn't actually lead me to say anything all that different about the causes of cooperation and conflict, and we'd need to wade through even uglier maths to get to the same conclusions you're already going to see. No one wants that. Not even me.
Enough about risk attitudes. When actors face uncertainty, it's not enough to compare the payoff they know for sure that they'll get if they choose one thing to the payoff they know for sure that they'll get if they choose another. For at least one of their choices, we have to calculate an expected utility instead. Expected utilities don't tell us what will actually happen if the actor makes a certain choice, but instead give us a quantity that summarizes how good or bad the choice is. Think back to the lecture on mathematical preliminaries, where I told you that the expected value of a wager between you and your friend was fifty pence; you never actually get fifty pence in that scenario. You either gain twenty pounds or you lose ten. But the fifty pence figure gives us a sense of whether you should take the bet or not. If you're risk-neutral, you should; your friend is offering you generous terms. If the expected value of that wager was just a little worse, say a loss of fifty pence, then you'd be wise to refuse.
A different example might help clarify things. Suppose we're betting on the outcome of a coin flip, rather than election. And I'm willing to offer you the same exact terms on as many coin flips as you want. However, I'm asking you to pay me a small amount every time I flip the coin. Suppose that small amount is 4 quid. If you win 10 pounds after correctly calling the outcome of the coin flip, and neither win nor lose anything when you don't, then the expected value of the flip is 5 quid. That means you should want to keep paying me to flip that coin until I decide I'm not willing to do so anymore, because you expect a net gain of one pound each time. You'll never actually get one pound back – you'll either be out four pounds or up nine. But you'll win half the coin flips, so it's almost as if you'd win five pounds for sure each time, for a net gain of one. That is, if you pay for one hundred coin flips, you can expect to win five hundred pounds (fifty flips at ten pounds each), which would be a net gain of one hundred pounds (because you'll have paid four hundred along the way.)
The same principle applies here. For risk-neutral actors, expected utilities are simply expected values, where the values are measured in terms of utility. So if some course of action entails a fifty percent chance of reaching an outcome that brings a utility of one, and a fifty percent chance of reaching an outcome that brings a utility of negative one, the expected utility of that course of action is zero. 
If you're confused, I suggest you go back and listen to the first optional lecture.
The next slide has some numerical examples. I won't go through them, though. I hope that some of you find this slide helpful, but I bet others already understand the concept of expected utility perfectly well. It is pretty straightforward, after all, once you grasp expected values (which, again, I discussed in the lecture on mathematical preliminaries.) Either way, though, I suggest you pause the lecture now and look at that table for a few moments. If you understand how I arrived at those expected utilities for choice B, and why I've written that a risk-neutral actor would choose A in three instances but B in the others, you're in good shape. If not, you've got some catching up to do. That should bother you, too, because you're going to need to calculate expected utilities in some of the in-class activities.
Ready to move on? Okay, turn to slide ten.
Here you see the model of teen angst again, but we're going to spice things up a bit this time around. I've changed two of the payoffs, and we're introducing uncertainty over one of them. First, I no longer assign Smitten a payoff of negative one in the event that they get shot down by Crush. Instead, they suffer a loss of utility that reflects the sensitivity of their ego. That is, Smitten's utility at that outcome is negative e, and e can take on any positive value. The larger it is, the more hurt they'll be if Crush shoots them down. If e is very small, though, then Smitten doesn't have a very fragile ego, and while they'd still prefer to be given a chance (or even to go back in time and choose to secretly admire Crush), they'll get over it pretty quickly.
Second, I've changed Crush's payoff for giving Smitten a chance to i, short for interest. This can take on positive or negative values. More on that in just a minute. 
As I said, we're not just changing the utilities, but introducing uncertainty as well. Specifically, we'll now assume that Smitten does not know the precise value of i, meaning they don't know how interested Crush is in them. We're going to allow Smitten to make a guess, though, because otherwise there's not a whole lot more that we can say. That, and because most of us generally do have some beliefs about how likely different scenarios are, even if they're crude and inaccurate. We don't need Smitten's guess about how likely it is that Crush is interested in them to be accurate; we just need it to exist. That's a pretty low bar.
To avoid the need for calculus (which would probably make you riot), I'm going to assume that Smitten only entertains two possibilities. 

The first is that Crush is the red type, in which case they have a relatively low level of interest in Smitten (so low they wouldn't even go on a pity date, as they would if we didn't restrict i-underline to being less than negative 1), and the other is that Crush is the blue type, in which case their interest is high enough that they'll not only give Smitten a chance but be happy that Smitten went for it. Smitten also knows how likely it is that they are dealing with each type – or at least has some belief about that, which we're going to assume is accurate for the sake of simplicity. Specifically, Smitten believes (correctly) that Crush is the blue type with probability phi and the red type with probability one minus phi.
A quick note about colors here. You've probably noticed I sometimes use dark green. That's just for emphasis, the way boldface font is sometimes used. Red and blue are different. Every time I walk you through a model with incomplete information, there will be two types of at least one of the players. That means that while there are only two people playing the game, one of them has to keep track of two possible versions of the other, because they don't know for sure which one they're dealing with. More sophisticated models allow for a whole range of possibilities, but as I said, that requires calculus, so we're not gonna go there. Besides, assuming that there are only two possibilities doesn't really affect the results. We'd word things a bit differently if we allowed for that, but the substantive implications wouldn't differ much.
So there will always be two types, and I'll help you keep track of the difference through color coding. What differentiates the types won't always be the same – here, it's one actor's level of romantic interest in another; in other models it will be how tempted they are to try exploiting other states or how good their military is at the conduct of war – but the blue type will always be the one that the uninformed player hopes they're dealing with. The red type will be the one they hope they're not facing.
Got all that? Okay, good. Turn to the last slide.
Smitten now compares u-S-admire – Smitten's utility for secretly admiring Crush – to E-u-S-go for it, or Smitten's expected utility for going for it. 
Why does the left hand side have just a plain old u while the right hand side as the uppercase E? If you know what I'm about to say, you're really on top of things. Congratulations! If not, that's a sign that you should be paying closer attention to things, or perhaps need to be taking better notes and reviewing them between lectures. Don't hesitate to shoot me an email if you find things confusing.
The answer is that Smitten knows exactly what happens if they admire Crush from afar. There's no uncertainty there; no need to bring expectations into it. But they don't know for sure what will happen if they go for it, because they don't know if they're dealing with the red type, who will shoot them down, or the blue type, who will give them a chance. They can make an educated guess, by calculating an expected utility, but that's the best they can do.
So we're looking for the conditions under which Smitten will admire Crush from afar. The inequalities you see below this first line are mathematically equivalent to u-S-admire being greater than or equal to E-u-S-go for it. They're telling us when something very specific would be true, not asserting that anything is true.
u-S-admire will be greater than or equal to E-u-S-go for it when 0 is greater than or equal to phi times 1 (because the probability that Crush is the blue type is phi, and when they are, they give Smitten a chance, which will bring Smitten a payoff of one) plus one minus phi times negative e (because the probability that Crush is the red type is one minus phi, and when they are, they'll shoot Smitten down, which brings Smitten a payoff of negative e.) In other words, we're comparing the sure-thing payoff of 0 to the expected utility of going for it, taking into account the fact that going for it can either bring an outcome that's better than 0 or one that's worse. 
Through some simple algebraic manipulation, which I won't walk you through now but I'd be happy to explain in class or by email, we can show that Smitten is better off admiring Crush from afar when phi is less than or equal to phi-hat, where phi-hat is just shorthand for e over one plus e. 
What does that mean?
Well, it's not as complicated as it sounds. That tells us that, all else equal, Smitten is less likely to play it safe the more confident they are that Crush is interested in them. Where did I get that from? Well, remember, phi is the probability that Crush is the blue type, and the blue type has a strictly positive level of interest in Smitten. And I just determined that Smitten plays it safe when phi is less than some threshold. So the lower phi is, the more likely they are to play it safe. Conversely, the higher phi is, the more likely they are to go for it. Once you translate the symbols into plain English, it all makes a lot of sense, doesn't it? 
The other thing the model tells us, which I think also makes sense, is that the threshold determining whether Smitten plays it safe or not moves closer to zero as e moves closer to zero, and moves closer to 1 as e increases. (Don't believe me? Plug some numbers into that fraction.) What does that mean? Remember, Smitten plays it safe if and only if phi is less than or equal to phi-hat. If phi-hat is arbitrarily close to zero, very few values of phi will lie below it. It's almost guaranteed, then, that Smitten won't play it safe. In other words, when e is small, meaning Smitten's ego isn't very sensitive, then Smitten is probably going to go for it, even if they think it's quite likely that Crush will shoot them down. Because they don't really care if they got shot down. They'd prefer not to be, but the prospect isn't all that scary to them. On the other hand, if e is enormous – if Smitten has a very delicate ego, and is crippled by the fear of rejection – then phi needs to be very, very close to one before Smitten will risk it. Meaning they have to be very confident that Crush likes them back before they'll go for it. Pretty intuitive, yeah?
As long as you pay attention when I tell you what the symbols mean, and take the time to translate symbolic statements like the one at the bottom of this slide back into English, I think you'll find that this game theory stuff isn't so bad – especially since I've done all the hard work for you. The results I come up with should make a lot of sense to you, after the fact. Sometimes they point in directions we might not have thought to look – that's one of the reasons I consider these models valuable – but most of the time, they just sharpen our intuitions by adding qualifiers to things we might have thought were true across the board. That's also valuable, of course, but shouldn't make any heads explode. What I'm saying is that, intimidating as the notation can be, you should generally think to yourself, “Okay, yeah, that makes sense” when I talk you through the results of the models. Otherwise, one of us is doing something wrong. And that someone's probably you, because I'm perfect. At least, that's what my mom tells me.
